On Integer Relations Between the Area and Perimeter of Heron Triangles
نویسندگان
چکیده
We discuss the relationship P 2 = nA for a triangle with integer sides, with perimeter P and area A, where n is an integer. We show that the problem reduces to finding rational points of infinite order in a family of elliptic curves. The geometry of the curves plays a crucial role in finding real triangles.
منابع مشابه
On Heron triangles
There has previously been given a one-parameter family of pairs of Heron triangles with equal perimeter and area. In this note, we find two twoparameter families of such triangle pairs, one of which contains the known one-parameter family as a special case. Second, for an arbitrary integer n > 2 we show how to find a set of n Heron triangles in two parameters such that all triangles have equal ...
متن کاملIntegral Isosceles Triangle-Parallelogram and Heron triangle-Rhombus Pairs with a Common Area and Common Perimeter.
In this paper we show that there are infinitely many pairs of integer isosceles triangles and integer parallelograms with a common (integral) area and common perimeter. We also show that there are infinitely many Heron triangles and integer rhombuses with common area and common perimeter. As a corollary, we show there does not exist any Heron triangle and integer square which have a common area...
متن کاملOn Heron Simplices and Integer Embedding
In [3] problem D22 Richard Guy asked for the existence of simplices with integer lengths, areas, volumes . . . . In dimension two this is well known, these triangles are called Heron triangles. Here I will present my results on Heron tetrahedra, their connection to the existence of an integer box (problem D18), the tools for the search for higher dimensional Heron simplices and my nice embeddin...
متن کاملAn elliptic K3 surface associated to Heron triangles
A rational triangle is a triangle with rational sides and rational area. A Heron triangle is a triangle with integral sides and integral area. In this article we will show that there exist infinitely many rational parametrizations, in terms of s, of rational triangles with perimeter 2s(s + 1) and area s(s − 1). As a corollary, there exist arbitrarily many Heron triangles with all the same area ...
متن کاملHeronian Triangles Whose Areas Are Integer Multiples of Their Perimeters
We present an improved algorithm for finding all solutions to Goehl’s problem A = mP for triangles, i.e., the problem of finding all Heronian triangles whose area (A) is an integer multiple (m) of the perimeter (P ). The new algorithm does not involve elimination of extraneous rational triangles, and is a true extension of Goehl’s original method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009